starstarstarstarstar_half
This course is an introduction to the finite element method as applicable to a range of problems in physics and engineering sciences. The treatment is mathematical, but only for the purpose of clarifying the formulation. The emphasis is on coding up the formulations in a modern, open-source environment that can be expanded to other applications, subsequently. The course includes about 45 hours of lectures covering the material I normally teach in an introductory graduate class at University of Michigan. The treatment is mathematical, which is natural for a topic whose roots lie deep in functional analysis and variational calculus. It is not formal, however, because the main goal of these lectures is to turn the viewer into a competent developer of finite element code. We do spend time in rudimentary functional analysis, and variational calculus, but this is only to highlight the mathematical basis for the methods, which in turn explains why they work so well. Much of the success of the Finite Element Method as a computational framework lies in the rigor of its mathematical foundation, and this needs to be appreciated, even if only in the elementary manner presented here. A background in PDEs and, more importantly, linear algebra, is assumed, although the viewer will find that we develop all the relevant ideas that are needed. The development itself focuses on the classical forms of partial differential equations (PDEs): elliptic, parabolic and hyperbolic. At each stage, however, we make numerous connections to the physical phenomena represented by the PDEs. For clarity we begin with elliptic PDEs in one dimension (linearized elasticity, steady state heat conduction and mass diffusion). We then move on to three dimensional elliptic PDEs in scalar unknowns (heat conduction and mass diffusion), before ending the treatment of elliptic PDEs with three dimensional problems in vector unknowns (linearized elasticity). Parabolic PDEs in three dimensions come next (unsteady heat conduction and mass diffusion), and the lectures end with hyperbolic PDEs in three dimensions (linear elastodynamics). Interspersed among the lectures are responses to questions that arose from a small group of graduate students and post-doctoral scholars who followed the lectures live. At suitable points in the lectures, we interrupt the mathematical development to lay out the code framework, which is entirely open source, and C++ based. Books: There are many books on finite element methods. This class does not have a required textbook. However, we do recommend the following books for more detailed and broader treatments than can be provided in any form of class: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, T.J.R. Hughes, Dover Publications, 2000. The Finite Element Method: Its Basis and Fundamentals, O.C. Zienkiewicz, R.L. Taylor and J.Z. Zhu, Butterworth-Heinemann, 2005. A First Course in Finite Elements, J. Fish and T. Belytschko, Wiley, 2007. Resources: You can download the deal.ii library at dealii.org. The lectures include coding tutorials where we list other resources that you can use if you are unable to install deal.ii on your own computer. You will need cmake to run deal.ii. It is available at cmake.org.
    starstarstarstarstar_half
    Prove to potential employers that you’re up to the task by becoming an Autodesk Certified Professional. This online course from Autodesk prepares you by offering an overview of skills that match what is covered in the Autodesk Certified Professional: Civil 3D for Infrastructure Design exam. The video lessons are structured to match the exam’s objective domains and follow the typical workflow and features of the Autodesk® AutoCAD® Civil 3D® software, including sections on points, parcels, and surveying, surfaces and grading, alignments and profiles, corridors and sections, pipe networks, and plan production and data management. In the course, you'll review advanced infrastructure topics. You’ll work with points and point groups, parcels and parcel styles, and the surveying tools. You'll also gain an understanding of exam topics such as TIN surfaces and volume surfaces, profile views, and both pipe and pressure networks. Brush up on feature lines, sites and grading models, corridors, note label styles, data shortcuts, and much more. The provided Civil 3D dataset allows you to follow along with the lessons and try out methods and workflows. Practice exercises and challenge assignments help you practice and review the exam topics on your own. Finally, you can test your knowledge by taking one of the full practice exams that accompany the course. About the Autodesk Certified Professional: Civil 3D for Infrastructure Design exam: The Autodesk Certified Professional: Civil 3D for Infrastructure Design exam is the recognized standard for measuring your knowledge in Civil 3D. Certification at this level demonstrates a comprehensive skill set that provides an opportunity for individuals to stand out in a competitive professional environment. This type of experience typically comes from having worked with the software on a regular basis for at least 2 years, equivalent to approximately 400 hours (minimum) - 1200 hours (recommended), of real-world Autodesk software experience. Ready to take the exam? Schedule to take the exam online or find a testing center near you on pearsonvue.com/autodesk.
      starstarstarstarstar_half
      Learners will create a roadmap to achieve their own personal goals related to the digital manufacturing and design (DM&D) profession, which will help them leverage relevant opportunities. The culminating project provides a tangible element to include in their professional portfolios that showcases their knowledge of Industry 4.0. This project is part of the Digital Manufacturing and Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0. To learn more about the specialization and its courses, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA
        starstarstarstarstar_half
        Prove to potential employers that you’re up to the task by becoming an Autodesk Certified Professional. This online course from Autodesk prepares you by offering an overview of skills that match what is covered in the Autodesk Certified Professional: Revit for Architectural Design exam. The video lessons are structured to match the exam’s objective domains and follow the typical workflow and features of the Autodesk® Revit® Architecture software, including sections on modeling and materials, families, documentation, views, and Revit project management. In the course, you'll review advanced modeling architectural topics and work with walls, floors, roofs, ceilings, stairs, columns, and rooms. You'll also gain an understanding of exam topics such as family categories and types, phases and design options, schedules, and worksharing. Brush up on selection sets, detail components, color schemes, levels and grids, and much more. About the Autodesk Certified Professional: Revit for Architectural Design exam: The Autodesk Certified Professional: Revit for Architectural Design exam is the recognized standard for measuring your architectural design skills and knowledge in Revit. The certification enables you to showcase your abilities and also signals to potential employers that your skills have been validated. This type of experience typically comes from having worked with the software on a regular basis for at least 2 years, equivalent to approximately 400 hours (minimum) - 1200 hours (recommended), of real-world Autodesk software experience. The Autodesk Certified Professional (ACP) certifications exams can be taken at a Pearson VUE Testing Center or through OnVUE, Pearson VUE’s online proctored environment. Candidates are given 120 minutes to complete a certification exam and should review the testing center polices and requirements before scheduling. Ready to take the exam? Schedule to take the exam online or find a testing center near you on Pearsonvue.com/autodesk.
          starstarstarstarstar_half
          The nature of digital manufacturing and design (DM&D), and its heavy reliance on creating a digital thread of product and process data and information, makes it a prime target for hackers and counterfeiters. This course will introduce students to why creating a strong and secure infrastructure should be of paramount concern for anyone operating in the DM&D domain, and measures that can be employed to protect operational technologies, systems and resources. Acquire knowledge about security needs and the application of information security systems. Build the foundational skills needed in performing a risk assessment of operational and information technology assets. Gain valuable insights of implementing controls to mitigate identified risks. Main concepts of this course will be delivered through lectures, readings, discussions and various videos. This is the seventh course in the Digital Manufacturing & Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0, and features a culminating project involving creation of a roadmap to achieve a self-established DMD-related professional goal. To learn more about the Digital Manufacturing and Design Technology specialization, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA
            starstarstarstarstar_half
            Enterprises that seek to become proficient in advanced manufacturing must incorporate manufacturing management tools and integrate data throughout the supply chain to be successful. This course will make students aware of what a digitally connected enterprise is, as they learn about the operational complexity of enterprises, business process optimization and the concept of an integrated product-process-value chain. Students will become acquainted with the available tools, technologies and techniques for aggregation and integration of data throughout the manufacturing supply chain and entire product life-cycle. They will receive foundational knowledge to assist in efforts to facilitate design, planning, and production scheduling of goods and services by applying product life cycle data. Main concepts of this course will be delivered through lectures, readings, discussions and various videos. This is the sixth course in the Digital Manufacturing & Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0, and features a culminating project involving creation of a roadmap to achieve a self-established DMD-related professional goal. To learn more about the Digital Manufacturing and Design Technology specialization, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA
              starstarstarstarstar_border
              Dear student, Centrifugal compressors of various designs and applications are encountered nowadays throughout refining, petrochemical and process industries as well as in power generation and environmental engineering. This course is designed to provide you with a complete understanding of construction details and functioning of centrifugal compressors. This understanding is a prerequisite for successful operations of your plant and piping system . The course includes extensive graphics, cut sections and 3D animations to give you a virtual practical exposure on centrifugal compressors. The objective of this course is threefold : 1. Break down for you all the centrifugal compressors operating principles into easily digestible concepts like compressor head, performance curve, system resistance, surge, stonewall, etc 2. Illustrate through 3D animations and cut-sections the main compressor mechanical components like impellers, shafts, bearings, seals, etc 3. Provide guidelines and best practices for operation, maintenance and troubleshooting This course also covers other types of compressors like axial compressors, rotary screw compressors, reciprocating compressors just to name a few. The objective is to observe the similarities in both performance and mechanical aspects of various types of compressors. So after enrolling in this course, you will not only learn valuable information on centrifugal compressors but also a great deal on other types of compressors !!! So with no further ado, check out the free preview videos and the curriculum of the course and we look forward to seeing you in the first section. Also remember, as an enrolled student you will have unlimited access to this material and one-on-one instructor support . So feel free to interact with us by email or simply ask us for help in the Q&A section. It will be our pleasure to help you and provide assistance. Hope to see you there WR Training Spread the wings of your knowledge
                starstarstarstar_half star_border
                This course is perfect for people who want to learn more about the plastic injection process and injection molds and expand their knowledge in an industry in high demand. This course is also essential for those people who have been in the sector for a long time and want to consolidate concepts, discover the why of things or simply remember concepts and see the latest trends in the sector. "Remember that everything in nature when it stagnates begins a decline" Index: Chapter 0: Introduction Chapter 1: Injection Molding Process Introduction Injection  cycle stages Pvt Diagrams Influence of injection parameters Calculation in injection process Deffects in injection molding Chapter 2: Scientific Molding Rheology curve Cavities balance Drop pressure Seal gate process window Chapter 3: Types of injection molds Introduction clasficaction by feeding system Clasification by number of plates in cavity/cores Clasification by number of cavities Special tools Chapter 4: Ejection system Introduction Ejection system componts Ejectors (pin ejector, sleeve ejector, blade ejectors) Undercuts( slider, lifter and hydraulic movements) Design of slider (components, calculations and recomendations) Design of lifters (components, calculations and recomendations) Design of Hydraulics (components, calculations and recomendations) Double ejection systems Cavity ejection system How is acted the ejection system Chapter 5: Cooling system Introduction Calculations: cooling time Calculations: heat transfer, coolant flow and diameter of channels Calculations: cooling channel depth and pitch Cooling channel lay-outs Components in cooling channel Temperatur control unit (TCU) Chapter 6: Injection system Introduction Types of injection system Hot runners Lay-out for moldings Calculations: runner diameters. Chapter 7: Gates Introduction types of gates Calculate shear rate Standard gates and runner shu-off Chapter 8: Venting Introduction Deffects and locations for venting Venting design Chapter 9: Graining Introduction Chemical and laser graining
                  starstarstarstarstar_half
                  There are opportunities throughout the design process of any product to make significant changes, and ultimately impact the future of manufacturing, by embracing the digital thread. In this course, you will dig into the transformation taking place in how products are designed and manufactured throughout the world. It is the second of two courses that focuses on the "digital thread" – the stream that starts at the creation of a product concept and continues to accumulate information and data throughout the product life cycle. Hear about the realities of implementing the digital thread, directly from someone responsible for making it happen at a company. Learn how the digital thread can fit into product development processes in an office, on a shop floor, and even across an enterprise. Be prepared to talk about the benefits, and limitations, of enacting it. Main concepts of this course will be delivered through lectures, readings, discussions and various videos. This is the third course in the Digital Manufacturing & Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0, and features a culminating project involving creation of a roadmap to achieve a self-established DMD-related professional goal. To learn more about the Digital Manufacturing and Design Technology specialization, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA
                    starstarstarstarstar_half
                    Prove to potential employers that you’re up to the task by becoming an Autodesk Certified Professional. This online course from Autodesk prepares you by offering an overview of skills that match what is covered in the Autodesk Certified Professional: AutoCAD for Design and Drafting exam. The video lessons are structured to match the exam’s objective domains and follow the typical workflow and features of the AutoCAD software, including sections on drawing and organizing objects, drawing with accuracy, advanced editing functions, layouts, printing, and outputs, annotation techniques, and reusable content and drawing management. In the course, you will create drawing objects, manage layers, apply object snaps, and work with the User Coordinate System. You’ll edit objects and apply rotation and scale, array techniques, grip editing, offsets, fillet and chamfer, and trim and extend. You will also gain an understanding of exam topics such as layouts and viewports, output formats, and drawing management. Brush up on markup tools, hatch and fill, text, tables, multileaders, dimensioning, and much more. About the Autodesk Certified Professional: AutoCAD for Design and Drafting Exam: The Autodesk Certified Professional: AutoCAD for Design and Drafting exam is the recognized standard for measuring your skills and knowledge in AutoCAD. Certification at this level demonstrates a comprehensive skill set that provides an opportunity for individuals to stand out in a competitive professional environment. This type of experience typically comes from having worked with the software on a regular basis for at least 2 years, equivalent to approximately 400 hours (minimum) - 1200 hours (recommended), of real-world Autodesk software experience. Ready to take the exam? Schedule to take the exam online or find a testing center near you on pearsonvue.com/autodesk.