starstarstarstarstar_half
You should complete the VLSI CAD Part I: Logic course before beginning this course. A modern VLSI chip is a remarkably complex beast: billions of transistors, millions of logic gates deployed for computation and control, big blocks of memory, embedded blocks of pre-designed functions designed by third parties (called “intellectual property” or IP blocks). How do people manage to design these complicated chips? Answer: a sequence of computer aided design (CAD) tools takes an abstract description of the chip, and refines it step-wise to a final design. This class focuses on the major design tools used in the creation of an Application Specific Integrated Circuit (ASIC) or System on Chip (SoC) design. Our focus in this part of the course is on the key logical and geometric representations that make it possible to map from logic to layout, and in particular, to place, route, and evaluate the timing of large logic networks. Our goal is for students to understand how the tools themselves work, at the level of their fundamental algorithms and data structures. Topics covered will include: technology mapping, timing analysis, and ASIC placement and routing. Recommended Background: Programming experience (C, C++, Java, Python, etc.) and basic knowledge of data structures and algorithms (especially recursive algorithms). An understanding of basic digital design: Boolean algebra, Kmaps, gates and flip flops, finite state machine design. Linear algebra and calculus at the level of a junior or senior in engineering. Elementary knowledge of RC linear circuits (at the level of an introductory physics class).
    starstarstarstarstar_half
    Язык программирования Python является одним из самых простых в освоении и популярных языков программирования. Целью курса является изучение основных конструкций языка Python, которые пригодятся при решении широкого круга задач – от анализа данных до разработки новых программных продуктов. В результате освоения курса слушатели научатся обрабатывать и хранить числа, тексты и их наборы, освоят стандартную библиотеку языка Python и смогут автоматизировать задачи по сбору и обработке данных. Курс дает необходимую базу для освоения более специализированных областей применения языка Python, таких как машинное обучение, статистическая обработка данных, визуализация данных и многих других. Также слушатели познакомятся с основами различных парадигм программирования: процедурным, функциональным и объектно-ориентированным программированием. Для качественного освоения курса достаточно знания математики на уровне средней школы, опыта программирования не требуется. В курсе предлагается большое количество задач по программированию, расположенных по нарастанию сложности, что позволяет закреплять на практике изучаемый материал. К каждому занятию прилагается полный конспект, это делает изучение курса удобнее. Курс проводился в оффлайн варианте для студентов бакалавриата факультета компьютерных наук НИУ ВШЭ. Появились технические трудности? Обращайтесь на адрес: [email protected]
      starstarstarstarstar_border
      An algorithmic paradigm or algorithm design paradigm is a generic model or framework which underlies the design of a class of algorithms. An algorithmic paradigm is an abstraction higher than the notion of an algorithm, just as an algorithm is an abstraction higher than a computer program. How does one calculate the running time of an algorithm? How can we compare two different algorithms? How do we know if an algorithm is `optimal'?
        starstarstarstarstar_half
        We’ll implement (in Python) together efficient programs for a problem needed by delivery companies all over the world millions times per day — the travelling salesman problem. The goal in this problem is to visit all the given places as quickly as possible. How to find an optimal solution to this problem quickly? We still don’t have provably efficient algorithms for this difficult computational problem and this is the essence of the P versus NP problem, the most important open question in Computer Science. Still, we’ll implement several solutions for real world instances of the travelling salesman problem. While designing these solutions, we will rely heavily on the material learned in the courses of the specialization: proof techniques, combinatorics, probability, graph theory. We’ll see several examples of using discrete mathematics ideas to get more and more efficient solutions. Do you have technical problems? Write to us: [email protected]
          starstarstarstarstar_half
          Updated in November 2018 with brand new section on Dynamic Programming! This course crams months of computer science and interview prep material into 20 hours of video. The content is based directly on last semester of my in-person coding bootcamps , where my students go on to land 6-figure developer jobs . I cover the exact same computer science content that has helped my students ace interviews at huge companies like Google, Tesla, Amazon , and Facebook . Nothing is watered down for an online audience; this is the real deal :)   We start with the basics and then eventually cover “advanced topics” that similar courses shy away from like Heaps, Graphs , and Dijkstra’s Shortest Path Algorithm . I start by teaching you how to analyze your code’s time and space complexity using Big O notation .  We cover the ins and outs of Recursion .  We learn a 5-step approach to solving any difficult coding problem. We cover common programming patterns. We implement popular searching algorithms . We write 6 different sorting algorithms : Bubble, Selection, Insertion, Quick, Merge, and Radix Sort.   Then, we switch gears and implement our own data structures from scratch, including linked lists, trees, heaps, hash tables , and graphs .  We learn to traverse trees and graphs, and cover Dijkstra's Shortest Path Algorithm .  The course also includes an entire section devoted to Dynamic Programming . Here's why this course is worth your time: It's interactive -  I give you a chance to try every problem before I show you my solution. Every single problem has a complete solution walkthrough video as well as accompanying solution file. I cover helpful "tips and tricks" to solve common problems, but we also focus on building an approach to ANY problem. It's full of animations and beautiful diagrams! Are you looking to level-up your developer skills? Sign up today!
            starstarstarstarstar_border
            "Excellent! Thank you for all your hard work." - Mammoth Interactive student Inderpal "Great! Well explained and the instructor provides clear examples" - Mark T. Dive into a world of data science and analysis with a wide range of examples including the CIFAR 100 image dataset, Xcode development for Apple, Swift coding, CoreML, image recognition, and structuring data with pandas. This Mammoth Interactive course was funded by a #1 project on Kickstarter Learn Android Studio, Java, app development, Pycharm, Python coding, Tensforflow and more with Mammoth Interactive. Build advanced projects using machine learning including advanced the MNIST database with neuron functions. Build a text summarizer and learn object localization, object recognition and Tensorboard. Machine learning is a machine’s ability to make decisions or predictions based on previous exposure to data and extensive training. In other words, if a machine (program, app, etc.) improves its prediction accuracy through training then it has “learned”. Learn How Models Work Computational graphs consist of a network of connected nodes (often called neurons). Each of these nodes typically has a weight and a bias that helps determine, given an input, which path is the most likely. There are 4 main components to building a machine learning program: data gathering and formatting, model building, training, and testing and evaluating Data Gathering and Formatting You will learn to gather plenty of data for the model to learn from. All data should be formatted pretty much the same (images same size, same color scheme, etc.) and should be labelled. Also divide data into mutually exclusive training and testing sets. Model Building You will learn to figure out which kind of model scheme works best and what kinds of algorithms work best for the problem you’re trying to solve. Training, Testing and Evaluating The model can choose paths through the neural network or computational graph based upon the inputs for a particular run, as well as the weights and biases of neurons in the network. In supervised learning, we show the model what the correct outputs are for a given set of inputs and the model alters the weights and biases of neurons to minimize the difference between its output and the correct answer. Enroll Now to Learn with Mammoth Interactive
              starstarstarstarstar_half
              Computational thinking is the process of approaching a problem in a systematic manner and creating and expressing a solution such that it can be carried out by a computer. But you don't need to be a computer scientist to think like a computer scientist! In fact, we encourage students from any field of study to take this course. Many quantitative and data-centric problems can be solved using computational thinking and an understanding of computational thinking will give you a foundation for solving problems that have real-world, social impact. In this course, you will learn about the pillars of computational thinking, how computer scientists develop and analyze algorithms, and how solutions can be realized on a computer using the Python programming language. By the end of the course, you will be able to develop an algorithm and express it to the computer by writing a simple Python program. This course will introduce you to people from diverse professions who use computational thinking to solve problems. You will engage with a unique community of analytical thinkers and be encouraged to consider how you can make a positive social impact through computational thinking.
                starstarstarstarstar_half
                Programming is an increasingly important skill, whether you aspire to a career in software development, or in other fields. This course is the first in the specialization Introduction to Programming in C, but its lessons extend to any language you might want to learn. This is because programming is fundamentally about figuring out how to solve a class of problems and writing the algorithm, a clear set of steps to solve any problem in its class. This course will introduce you to a powerful problem-solving process—the Seven Steps—which you can use to solve any programming problem. In this course, you will learn how to develop an algorithm, then progress to reading code and understanding how programming concepts relate to algorithms.
                  starstarstarstarstar_half
                  Counting is one of the basic mathematically related tasks we encounter on a day to day basis. The main question here is the following. If we need to count something, can we do anything better than just counting all objects one by one? Do we need to create a list of all phone numbers to ensure that there are enough phone numbers for everyone? Is there a way to tell that our algorithm will run in a reasonable time before implementing and actually running it? All these questions are addressed by a mathematical field called Combinatorics. In this course we discuss most standard combinatorial settings that can help to answer questions of this type. We will especially concentrate on developing the ability to distinguish these settings in real life and algorithmic problems. This will help the learner to actually implement new knowledge. Apart from that we will discuss recursive technique for counting that is important for algorithmic implementations. One of the main `consumers’ of Combinatorics is Probability Theory. This area is connected with numerous sides of life, on one hand being an important concept in everyday life and on the other hand being an indispensable tool in such modern and important fields as Statistics and Machine Learning. In this course we will concentrate on providing the working knowledge of basics of probability and a good intuition in this area. The practice shows that such an intuition is not easy to develop. In the end of the course we will create a program that successfully plays a tricky and very counterintuitive dice game. As prerequisites we assume only basic math (e.g., we expect you to know what is a square or how to add fractions), basic programming in python (functions, loops, recursion), common sense and curiosity. Our intended audience are all people that work or plan to work in IT, starting from motivated high school students.
                    starstarstarstar_half star_border
                    This course is for all those people who want to learn data structure and Algorithm from absolute basic to Intermediate level. We don't expect you to have any prior knowledge on Data Structure or Algorithm, but a basic prior knowledge of any Programming Language(preferably C++) will be helpful. Thanks for stopping by !