star_border star_border star_border star_border star_border
Курс “Теория электромагнитного поля” посвящен изложению классической электродинамики. В основу положена специальная теория относительности Эйнштейна, в рамках которой электромагнитное поле описывается четырехмерным тензором в пространстве Минковского. Первая часть курса посвящена подробному изложению постулатов теории относительности и ее основных элементов, включая преобразования Лоренца, релятивистское сокращение длины, замедление времени, законы преобразования скоростей. Обсуждаются свойства энергии и импульса релятивистских частиц, упругие столкновения частиц и распады. Во второй части курса электромагнитное поле вводится как объект в пространстве Минковского, описываемый 4-вектором и 4-тензором. Выводятся уравнения движения заряженной частицы во внешнем поле и рассматриваются их свойства и простейшие решения. Обсуждаются свойства тензора электромагнитного поля, законы преобразования полей, инварианты поля. Построено выражение для действия системы, состоящей из заряженных частиц и электромагнитного поля. Получены уравнения Максвелла, закон сохранения заряда и закон сохранения энергии для системы заряженных частиц в электромагнитном поле. Третья часть курса содержит изложение электростатики и магнитостатики. Вводятся понятия дипольного и квадруполного моментов системы зарядов и магнитного момента системы токов. Подробно обсуждается разложение электрического и магнитного поля на больших расстояниях от системы зарядов и токов, а также поведение таких систем во внешнем слабо неоднородном поле. Четвертая часть курса посвящена описанию электромагнитных волн. Выводится волновое уравнение и строятся его простейшие решения в виде плоских волн. Сделаны оценки для силы светового давления. Обсуждается плоская монохроматическая электромагнитная волна, поляризация, волновой вектор и закон преобразования частоты волны при переходе между инерциальными системами отсчета (эффект Доплера). Пятая часть курса посвящена построению общего решения уравнений Максвелла для электромагнитных полей, создаваемых системой зарядов, совершающих заданное движение. Выводятся и обсуждаются выражения для запаздывающих потенциалов и потенциалов Лиенара–Вихерта. Подробно проанализировано выражение для электромагнитного поля точечного заряда, движущегося вдоль заданной траектории. В заключительной части курса излагается теория излучения электромагнитных волн. Рассмотрены дипольное, магнитно-дипольное и квадрупольное излучение, а также излучение быстро движущегося заряда. Получены общие выражения для спектров и приближенные асимптотические формулы для спектрально-углового распределения излучения ультрарелятивистских частиц. Рассмотрена задача о рассеянии электромагнитной волны системой нерелятивистских зарядов. Найдено поле в ближней зоне излучающей системы. Введено понятие силы радиационного трения и получена приближенная нерелятивистская формула для нее. Определяются приделы применимости классической электродинамики. Уровень и объем изложения в целом соответствуют содержанию II тома курса теоретической физики Л.Д. Ландау и Е.М. Лифшица. Лекции предназначены для студентов, специализирующихся в области экспериментальной и теоретической физики. Для освоения лекционного материала необходимо знание классической механики, дифференциального и интегрального исчисления и теории дифференциальных уравнений. Базовые сведения из векторного и тензорного анализа даются по мере изложения курса.
    star_border star_border star_border star_border star_border
    На протяжении всего развития цивилизации перед человечеством регулярно возникали энергетические проблемы, обусловленные ростом удельного энергопотребления. Качественно новый этап в развитии энергетики в XXI веке определяется наступающим истощением традиционных ископаемых топливных ресурсов. Проблемы энергообеспечения уже в среднесрочной перспективе будут приобретать все большую значимость не только в связи с ограничением топливных ресурсов, но и в силу меняющихся представлений о качестве жизни. Для устойчивого развития общества в перспективе необходимо развивать энергетику, использующую практически неограниченный ресурс, безопасную в эксплуатации и чистую в экологическом плане. Из рассматриваемых возможностей этим требованиям в значительной степени отвечает термоядерная энергетика. Аргументы в пользу управляемого термоядерного синтеза (УТС) хорошо известны: от наивысшей, среди известных человечеству, калорийности и практически неисчерпаемых запасов дейтерия в природе, до значительно меньших (более чем в 100 раз) уровней радиоактивных отходов по сравнению с энергетическими циклами на основе реакций деления актиноидов. На возможность использования реакций синтеза легких ядер для целей экологически чистой, безопасной и экономически выгодной энергетики было обращено внимание более 50 лет назад. Все изобретенные за это время устройства можно разделить на два класса: 1) системы, основанные на магнитном удержании горячей плазмы (токамаки, стеллараторы); 2) импульсные системы (системы инерциального термоядерного синтеза (ИТС)). Оба типа систем, уже, вплотную подошли к созданию экспериментальных машин с положительным выходом энергии, в которых будут проверены основные элементы будущих термоядерных реакторов. В настоящее время в инерционном термоядерном синтезе разрабатываются несколько типов драйверов: лазеры, пучки тяжелых ионов, быстрые Z-пинчи. Преимущество лазерного излучения заключается в относительной легкости его транспортировки к мишени и его фокусировки, возможности получать огромные плотности мощности, требуемые для эффективного сжатия и разогрева мишени. Основные технологические трудности создания импульсных реакторов лежат в области лазерной техники. В настоящее время, в мире постоянно расширяется фронт работ по созданию импульсных лазерных установок, при фокусировке излучения которых реализуются термодинамические состояния доступные в природе только в центрах массивных звезд. Это связано с бурным ростом технологий, обеспечивающих возможность достижения все более высоких энергетических характеристик лазерных систем. В лазерном термоядерном синтезе (ЛТС) соединились два наиболее замечательных открытия столетия - термоядерные реакции и квантовая генерация света, для того чтобы подарить человечеству практически неисчерпаемый источник энергии. Проблема управляемого термоядерного синтеза еще далека от своего решения, но во всем мире ведутся интенсивные работы и с каждым годом расстояние до цели сокращается.
      star_border star_border star_border star_border star_border
      En este MOOC se abordan conceptos básicos de termodinámica, que resultarán de gran utilidad al alumnado de primero de grado o en disposición de acceder a estudios universitarios de cualquier rama de la ciencia y la tecnología. La termodinámica es una materia básica en un amplio abanico de estudios científicos y tecnológicos, así como una herramienta perfecta para ayudar a desarrollar el pensamiento crítico. En este curso introductorio se presentan los conceptos más básicos de esta disciplina, de modo que, más adelante en tu formación, puedas comprender sin mayor dificultad las leyes de la termodinámica, que no se llegan a tratar en este curso.