starstarstarstarstar_half
Course Overview: https://www.youtube.com/watch?v=sdom7zBIfkE Statics is the most fundamental course in Mechanics. In this course, you will learn the conditions under which an object or a structure subjected to time-invariant (static) forces is in equilibrium - i.e. the conditions under which it remains stationary or moves with a constant velocity-. You will also learn how to calculate the reaction forces as well as the internal forces experienced throughout the structure so that later you can properly design and size the foundation and the members of the structure to assure the structure’s safety and serviceability. This course is suitable for learners with interest in different Engineering disciplines such as civil engineering, architecture, mechanical engineering, aerospace. Non engineering disciplines may also find the course very useful, from archaeologist who are concerned about the stability of their excavation sites to dentists interested in understanding the forces transmitted through dental bridges, to orthopedic surgeons concerned about the forces transmitted through the spine, or a hip or knee joint. The content will be primarily delivered using light board. Prof. Katafygiotis is going to write and sketch with color markers directly on the board while facing you. You will have an exciting and interactive learning experience online!
    starstarstarstarstar_border
    Course 5 of Statistical Thermodynamics explores three different applications of non-equilibrium statistical thermodynamics. The first is the transport behavior of ideal gases, with some discussion of transport in dense gases and liquids. It starts with simple estimates of the transport properties of an ideas gas. It then introduces the Boltzmann Equation and describes the Chapman-Enskog solution of that equation in order to obtain the transport properties. It closes with a discussion of practical sources of transport properties. Spectroscopic methods have become increasingly common as a way of determining the thermodynamic state of a system. Here we present the underlying concepts of the subject and explores how spectroscopy can be used to determine thermodynamic and flow properties. Chemical kinetics are important in a variety of fluid/thermal applications including combustion, air quality, fuel cells and material processing. Here we cover the basics of chemical kinetics, with a particular focus on combustion. It starts with some definitions, including reaction rate and reaction rate constant. It then explores methods for determining reaction rate constants. Next, systems of reactions, or reaction mechanisms, are explored, including the oxidation of hydrogen and hydrocarbon fuels. Finally, computational tools for carrying out kinetic calculations are explored.
      starstarstarstarstar_half
      Gain confidence when dealing with stakeholders of major projects by learning to identify and manage those that are involved in the project planning and delivery. This course will enable you to explore project governance in theory and practice. Through real life examples you’ll understand how the critical challenges of the governance in major projects are resolved. Being able to successfully manage risk and uncertainty in major projects is vital for their delivery. In this course you’ll learn to distinguish between risk and uncertainty and the role of risk register. You’ll identify the unique challenges of scope management in major projects and employ scope management tools and techniques that will facilitate your project planning. This course explores concepts analysed in the University’s Online MSc in Engineering Management. If you are interested to develop your skills further, take a look at our online degree.
        starstarstarstarstar_half
        This course explores the analysis and design of thin-walled pressure vessels and engineering structures subjected to torsion. ------------------------------------------------ The copyright of all content and materials in this course are owned by either the Georgia Tech Research Corporation or Dr. Wayne Whiteman. By participating in the course or using the content or materials, whether in whole or in part, you agree that you may download and use any content and/or material in this course for your own personal, non-commercial use only in a manner consistent with a student of any academic course. Any other use of the content and materials, including use by other academic universities or entities, is prohibited without express written permission of the Georgia Tech Research Corporation. Interested parties may contact Dr. Wayne Whiteman directly for information regarding the procedure to obtain a non-exclusive license.
          starstarstarstar_half star_border
          This course is perfect for people who want to learn more about the plastic injection process and injection molds and expand their knowledge in an industry in high demand. This course is also essential for those people who have been in the sector for a long time and want to consolidate concepts, discover the why of things or simply remember concepts and see the latest trends in the sector. "Remember that everything in nature when it stagnates begins a decline" Index: Chapter 0: Introduction Chapter 1: Injection Molding Process Introduction Injection  cycle stages Pvt Diagrams Influence of injection parameters Calculation in injection process Deffects in injection molding Chapter 2: Scientific Molding Rheology curve Cavities balance Drop pressure Seal gate process window Chapter 3: Types of injection molds Introduction clasficaction by feeding system Clasification by number of plates in cavity/cores Clasification by number of cavities Special tools Chapter 4: Ejection system Introduction Ejection system componts Ejectors (pin ejector, sleeve ejector, blade ejectors) Undercuts( slider, lifter and hydraulic movements) Design of slider (components, calculations and recomendations) Design of lifters (components, calculations and recomendations) Design of Hydraulics (components, calculations and recomendations) Double ejection systems Cavity ejection system How is acted the ejection system Chapter 5: Cooling system Introduction Calculations: cooling time Calculations: heat transfer, coolant flow and diameter of channels Calculations: cooling channel depth and pitch Cooling channel lay-outs Components in cooling channel Temperatur control unit (TCU) Chapter 6: Injection system Introduction Types of injection system Hot runners Lay-out for moldings Calculations: runner diameters. Chapter 7: Gates Introduction types of gates Calculate shear rate Standard gates and runner shu-off Chapter 8: Venting Introduction Deffects and locations for venting Venting design Chapter 9: Graining Introduction Chemical and laser graining
            starstarstarstarstar_half
            There are opportunities throughout the design process of any product to make significant changes, and ultimately impact the future of manufacturing, by embracing the digital thread. In this course, you will dig into the transformation taking place in how products are designed and manufactured throughout the world. It is the second of two courses that focuses on the "digital thread" – the stream that starts at the creation of a product concept and continues to accumulate information and data throughout the product life cycle. Hear about the realities of implementing the digital thread, directly from someone responsible for making it happen at a company. Learn how the digital thread can fit into product development processes in an office, on a shop floor, and even across an enterprise. Be prepared to talk about the benefits, and limitations, of enacting it. Main concepts of this course will be delivered through lectures, readings, discussions and various videos. This is the third course in the Digital Manufacturing & Design Technology specialization that explores the many facets of manufacturing’s “Fourth Revolution,” aka Industry 4.0, and features a culminating project involving creation of a roadmap to achieve a self-established DMD-related professional goal. To learn more about the Digital Manufacturing and Design Technology specialization, please watch the overview video by copying and pasting the following link into your web browser: https://youtu.be/wETK1O9c-CA
              starstarstarstarstar_half
              Prove to potential employers that you’re up to the task by becoming an Autodesk Certified Professional. This online course from Autodesk prepares you by offering an overview of skills that match what is covered in the Autodesk Certified Professional: AutoCAD for Design and Drafting exam. The video lessons are structured to match the exam’s objective domains and follow the typical workflow and features of the AutoCAD software, including sections on drawing and organizing objects, drawing with accuracy, advanced editing functions, layouts, printing, and outputs, annotation techniques, and reusable content and drawing management. In the course, you will create drawing objects, manage layers, apply object snaps, and work with the User Coordinate System. You’ll edit objects and apply rotation and scale, array techniques, grip editing, offsets, fillet and chamfer, and trim and extend. You will also gain an understanding of exam topics such as layouts and viewports, output formats, and drawing management. Brush up on markup tools, hatch and fill, text, tables, multileaders, dimensioning, and much more. About the Autodesk Certified Professional: AutoCAD for Design and Drafting Exam: The Autodesk Certified Professional: AutoCAD for Design and Drafting exam is the recognized standard for measuring your skills and knowledge in AutoCAD. Certification at this level demonstrates a comprehensive skill set that provides an opportunity for individuals to stand out in a competitive professional environment. This type of experience typically comes from having worked with the software on a regular basis for at least 2 years, equivalent to approximately 400 hours (minimum) - 1200 hours (recommended), of real-world Autodesk software experience. Ready to take the exam? Schedule to take the exam online or find a testing center near you on pearsonvue.com/autodesk.
                starstarstarstarstar_half
                This course introduces you to the foundational knowledge in computer-aided design, manufacture, and the practical use of CNC machines. In this course we begin with the basics in Autodesk® Fusion 360™ CAD by learning how to properly sketch and model 3D parts. Before we program any toolpaths, we’ll explore CNC machining basics to ensure we have the ground level foundational knowledge needed to effectively define toolpaths. Finally, we explore the basics of setting up a CAM program and defining toolpaths to cut simple geometry. This is the same basic process that gets repeated for the design and manufacture of any part and is a critical step in learning and understanding the process. Want to take your learning to the next level? Complete the Autodesk CAD/CAM for Manufacturing Specialization, and you’ll unlock an additional Autodesk Credential as further recognition of your success! The Autodesk Credential comes with a digital badge and certificate, which you can add to your resume and share on social media platforms like LinkedIn, Facebook, and Twitter. Sharing your Autodesk Credential can signal to hiring managers that you’ve got the right skills for the job and you’re up on the latest industry trends like generative design. Enroll in the Specialization here: https://www.coursera.org/specializations/autodesk-cad-cam-manufacturing
                  starstarstarstarstar_half
                  How can we create agile micro aerial vehicles that are able to operate autonomously in cluttered indoor and outdoor environments? You will gain an introduction to the mechanics of flight and the design of quadrotor flying robots and will be able to develop dynamic models, derive controllers, and synthesize planners for operating in three dimensional environments. You will be exposed to the challenges of using noisy sensors for localization and maneuvering in complex, three-dimensional environments. Finally, you will gain insights through seeing real world examples of the possible applications and challenges for the rapidly-growing drone industry. Mathematical prerequisites: Students taking this course are expected to have some familiarity with linear algebra, single variable calculus, and differential equations. Programming prerequisites: Some experience programming with MATLAB or Octave is recommended (we will use MATLAB in this course.) MATLAB will require the use of a 64-bit computer.
                    starstarstarstarstar_half
                    Course 2 of Statistical Thermodynamics presents an introduction to quantum mechanics at a level appropriate for those with mechanical or aerospace engineering backgrounds. Using a postulatory approach that describes the steps to follow, the Schrodinger wave equation is derived and simple solutions obtained that illustrate atomic and molecular structural behavior. More realistic behavior is also explored along with modern quantum chemistry numerical solution methods for solving the wave equation.